翻訳と辞書 |
Molecular processors : ウィキペディア英語版 | Molecular processors
A molecular processor is a processor that is based on a molecular platform rather than on an inorganic semiconductor in integrated circuit format. ==Current technology==
Molecular processors are currently in their infancy and currently only a few exist. At present a basic molecular processor is any biological or chemical system that uses a complementary DNA (cDNA) template to form a long chain amino acid molecule. A key factor that differentiates molecular processors is "the ability to control output" of protein or peptide concentration as a function of time. Simple formation of a molecule becomes the task of a chemical reaction, bioreactor or other polymerization technology. Current molecular processors take advantage of cellular processes to produce amino acide based proteins and peptides. The formation of a molecular processor currently involves integrating cDNA into the genome and should not replicate and re-insert, or be defined as a virus after insertion. Current molecular processors are replication incompetent, non-communicable and cannot be transmitted from cell to cell, animal to animal or human to human. All must have a method to terminate if implanted. The most effective methodology for insertion of cDNA (template with control mechanism) uses capsid technology to insert a payload into the genome. A viable molecular processor is one that dominates cellular function by re-task and or reassignment but does not terminate the cell. It will continuously produce protein or produce on demand and have method to regulate dosage if qualifying as a "drug delivery" molecular processor. Potential applications range from up-regulation of functional CFTR in Cystic Fibrosis and Hemoglobin in Sickle Cell Anemia to angiogenesis in cardiovascular stenosis to account for protein deficiency (used in gene therapy.)
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Molecular processors」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|